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Abstract—In this paper, we address the design of codes which
achieve modulation diversity in block fading single-input single-
output (SISO) channels with signal quantization at receiver and
low-complexity decoding. With an unquantized receiver, coding
based on algebraic rotations is known to achieve modulation
coding diversity. On the other hand, with a quantized receiver,
algebraic rotations may not guarantee diversity. Through analy-
sis, we propose specific rotations which result in the codewords
having equidistant component-wise projections. We show that the
proposed coding scheme achieves maximum modulation diversity
with a low-complexity minimum distance decoder.

I. INTRODUCTION

In practical communication receivers, the analog received
signal is quantized into a finite number of bits for fur-
ther digital baseband processing. With increasing bandwidth
requirements of modern communication systems, analog-to-
digital converters (ADC) are required to operate at high fre-
quencies. However, at high operating frequencies, the precision
of ADC’s is limited [1]. Limited precision generally leads
to high quantization noise, which degrades performance. In
case of fading channels, high error floors in the bit error
performance have been reported, and it seems difficult to
avoid this behavior [2][3]. On the other hand, channel capacity
results show that even with 2-bit quantizers, the capacity of
a quantized output channel is not far from that of a channel
with unquantized output [4][5]. Therefore, there appears to be
a gap between the theoretical limits of communication with
quantized receivers, and the current state of art.

In communication systems with fading, an important perfor-
mance metric is the reliability of reception. For single antenna
fading scenarios, modulation diversity is a well known signal
space diversity technique to improve the reliability/diversity
of reception [6][7]. However, with a quantized receiver, this
coding alone does not guarantee improvement in diversity.

In this paper, we propose 2-dimensional constellations ro-
tated by an angle θ. With a quantized receiver, the maximum
likelihood (ML) decoder is not the usual minimum distance
decoder, and would be much more complex to implement. We
therefore assume a minimum distance decoder operating on the
quantized channel outputs. We observe that, with a quantized
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receiver, i) for a given rate of information transmission in
bits per channel use, there is a minimum requirement on the
number of quantization bits, without which floors2 appear in
the error probability performance, ii) there is only a small
subset of admissible rotation angles which can guarantee
diversity improvement, and iii) for a quantized receiver with
perfect channel knowledge and minimum distance decoding,
we analytically show that, among all admissible rotation an-
gles, a good angle is one in which the transmitted vectors have
equidistant projections along both the transmitted components.
We then show that the square M2-QAM constellation rotated
by θ = tan−1(1/M) has equidistant projections.

In this paper, we assume perfect channel state information at
the receiver. However, in a separate work, we relax the perfect
channel knowledge assumption, and propose novel training
sequences and channel estimation scheme, which are shown to
achieve an error probability performance close to that achieved
with perfect channel knowledge [11].

II. SYSTEM MODEL AND QUANTIZED RECEIVER

We consider SISO block fading channels with single trans-
mit and single receive antenna. The channel gains are assumed
to be quasi-static for the coherence interval of the channel, and
change to an independent realization in the next coherence
interval. We further assume that the signaling bandwidth is
much smaller than the coherence bandwidth of the channel
(frequency flat fading), and therefore the channel frequency
response is assumed to have constant magnitude and linear
phase within the signalling bandwidth. Let the radio frequency
band used for transmission be (fc − W/2, fc + W/2), where
fc � W is the carrier frequency and W is the signaling
bandwidth. The complex channel frequency response is then
given by

H(f) = |h|e−j2πτf , |f − fc| ≤
W
2

, (1)

and zero elsewhere. Therefore the transmitted signal is scaled
by |h|, and is delayed by τ seconds. The transmitted signal is
given by

x(t) =
∑

k

(xI
k cos(2πfct) + xQ

k sin(2πfct))g(t − kT ), (2)

2Error probability performance is said to floor, if and only if it converges
to a non-zero positive constant as the signal-to-noise ratio tends to infinity.
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Fig. 1. Receiver analog front end (AFE) .

where 1/T is the rate at which information symbols are trans-
mitted, and xk = xI

k +jxQ
k is the k-th transmitted information

symbol. We assume pulse shaping signals which result in no
inter-symbol interference (ISI) (e.g., g(t) = sinc(Wt)). Prior
to the transmission of K information symbols, there is a train-
ing phase in which a known preamble sequence of P symbols
is transmitted to enable carrier frequency synchronization in
the receiver (i.e., enabling the phased locked loop (PLL) in
the receiver to lock to the transmitter’s local oscillator) and
also for tuning the receiver gain. In this paper we assume
the preamble to be a constant amplitude carrier obtained by
setting xI

k = A and xQ
k = 0 in (2). The received signal

during the training phase of duration P symbols, is given by
y(t) = A|h| cos(2πfct − 2πfcτ)

∑P−1
k=0 g((t − τ) − kT ).

Figure 1 shows the signal path of the analog front end of a
typical heterodyne receiver. Let the combined gain of the Low
Noise Amplifier (LNA), Mixer (MXR) and Low Pass Filter
(LPF) be denoted by gAFE . In the training phase, after the
PLL has locked, the LPF output (I Path) is given by uI(t) =
AgAFE |h|

∑k=P−1
k=0 g((t−τ)−kT )+nI(t), where nI(t) is the

white Gaussian noise in the receiver (I path). The LPF output
is digitized using a Nyquist rate sample & hold type analog-
to-digital converter (ADC), as shown in Fig. 1. Let the input
dynamic range of the ADC be −cq/2 to cq/2. We also refer to
cq/2 as the clip level, since any input greater than cq/2 would
be limited to cq/2. For optimum performance, it is desirable
that the range of the input signal to the ADC matches with the
ADC dynamic range (ADC range matching). Due to fading,
the input level at the ADC may vary, and therefore a variable
gain amplifier (VGA) is generally used to ensure ADC range
matching. The gain of the VGA is controlled by the automatic
gain control (AGC) module [8]. During the training phase, the
AGC detects the peak of the signal uI(t) using a conventional
analog peak detector whose output is given by

Vagc−pk = AgAFE |h|. (3)

Let X denote the peak absolute value of the transmitted sym-
bols, xI

k and xQ
k , during normal data communication phase.

During data communication phase, ADC range matching (i.e.,
cq

2 = gV GAgAFE |h|X) requires the VGA gain to be

gV GA =
cq

2
A
X

1
Vagc−pk

. (4)

Since the ratio A/X and cq/2 are known a priori, this
computation is done in the AGC using simple analog circuits
[9]. In the rest of the paper, we assume that this computation
is perfect.

During the information transmission phase, the PLL track-
ing loop is turned off and the VGA gain setting is frozen
to the value given by (4). Therefore, during this phase,
the ADC input signal (I path) is given by zI(t) =
gV GA(gAFE |h|

∑K+P−1
k=P xI

kg(t − τ − kT ) + nI(t)) =
cq

2

∑K+P−1
k=P

xI
k

X g(t− τ − kT ) + gV GAnI(t). The ADC input
(Q-path) is similar. Subsequently, without loss of generality,
we assume an ADC with a normalized clip level of cq/2 = 1.
Assuming perfect timing synchronization (i.e., receiver can
perfectly estimate τ ), the k-th output of the sample & hold
circuit, at time t = τ + kT is given by

sI
k =

xI
k

X
+

wI
k

|h|X , sQ
k =

xQ
k

X
+

wQ
k

|h|X , (5)

where wI
k

∆= nI(τ + kT )/gAFE , and wQ
k

∆=
nQ(τ + kT )/gAFE . Since nI(t) and nQ(t) are Gaussian
random processes, wI

k and wQ
k are i.i.d. Gaussian random

variables with variance denoted by σ2/2. Let the average
transmit power be denoted by PT

∆= E[|xk|2]. Then the
instantaneous signal to noise ratio (SNR) at the output of
the sample & hold circuit is given by γinst

∆= PT |h|2/σ2.
Assuming a Rayleigh fading model with h ∼ CN (0, 1),
the average signal to noise ratio (SNR) is given by
γ ∆= Eh[γinst] = PT /σ2. The output of the sample & hold
circuit is then quantized by a b-bit uniform quantizer Q, as
shown in Fig. 1. The quantizer is modeled by the function
Qb(t), t ∈ R, which is given by

Qb(t) =






+1, ζ(t) ≥ (2b−1 − 1)
−1, ζ(t) ≤ −(2b−1 − 1)

(2ζ(t)+1)
2b−1 , otherwise

(6)

ζ(t) ∆=
⌊ t (2b − 1)

2

⌋
(7)

where bxc denotes the largest integer not greater than x. For a
n-dimensional complex vector z = (z1, z2, · · · , zn), let Qb(z)
denote the n-dimensional component-wise quantized version
of z. That is, z̃ = (z̃1, z̃2, · · · , z̃n) = Qb(z) implies that

z̃I
i = Qb(zI

i ) , z̃Q
i = Qb(z

Q
i ) i = 1, 2, . . . , n. (8)

The k-th quantized received symbol, rk = rI
k+jrQ

k is therefore
given by

rI
k = Qb(sI

k) , rQ
k = Qb(s

Q
k ) (9)

where sI
k and sQ

k are the real and imaginary components of
the k-th sample & hold output symbol given by (5).

Modulation diversity coding is illustrated in Fig. 2. Coding
is performed across n > 1 information symbols resulting
in n coded symbols/codeword. These n coded symbols are
interleaved and then transmitted over n independent channel
coherence intervals (realizations). At the receiver, the channel
outputs during the n coherence intervals are buffered, followed
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Fig. 2. Achieving modulation diversity by coding across n different channel
realizations.

by de-interleaving and detection. Suitable coding across n in-
dependent channel realizations results in an n-fold increase in
the diversity of reception. In fading channels, codes designed
using algebraic lattices can achieve modulation diversity, and
are therefore employed to improve the diversity of reception
[6]. With an unquantized receiver, it is known that lattice
codes based on algebraic rotations can achieve full modulation
diversity [7][10]. However, with quantized receivers, this is no
longer true.

In this paper we consider the case of n = 2. Let the infor-
mation symbol vector be denoted by u = (u1, u2)T , where the
information symbols u1 and u2 are restricted to square M2-
QAM signal set, though a generalization to non-square QAM
is trivial. Let the set SM = {−(M −1), . . . ,−1, 1, · · · , (M −
1)} denote the M -PAM signal set. Then, M2-QAM is denoted
by the set S2

M
∆= {w + jv | w, v ∈ SM}. The information

symbols are coded using a 2 × 2 rotation matrix G, resulting
in the transmit vector x = (x1, x2)T = Gu, where

G =
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
. (10)

Due to QAM symmetry, one can restrict the rotation angle in
(10) to [0, π/4). The set of transmitted vectors X and the peak
component value X are given by

X =

{
x | x = Gu, u1, u2 ∈ S2

M

}
,

X = max
x∈X

{
max
i=1,2

[
max(|xI

i |, |xQ
i |)

]}
(11)

Also, let the channel gain during the transmission of x1 and
x2 be denoted by |h1| and |h2|, respectively. We assume h1
and h2 to be i.i.d. CN (0, 1). Let r = (r1, r2)T denote the
quantized received vector, where r1 = rI

1 + jrQ
1 and r2 =

rI
2 + jrQ

2 are the ADC outputs during the transmission of x1

and x2, respectively. From (5) and (9) it follows that

rI
i = Qb

(xI
i

X
+

wI
i

|hi|X
)

, rQ
i = Qb

(xQ
i

X
+

wQ
i

|hi|X
)
. (12)

With the above quantized receiver model, maximum likelihood
decoding is no more given by the minimum distance decoder,
and is rather complex. Nevertheless, due to its lower decoding
complexity, we shall assume a minimum distance decoder
taking r as its input, and the output (detected information
symbols) given by

û = arg min
u∈S2

M×S2
M

∥∥∥diag(|h1|, |h2|)
(
r− Gu

X

)∥∥∥
2

(13)

where † and ‖.‖ denote Hermitian transpose and Euclidean
norm respectively.

III. ROTATION CODING IN QUANTIZED RECEIVER

In an unquantized receiver, at high SNR, the word error
probability is minimized by choosing the transmit vectors such
that the minimum product distance between any two vectors
is maximized [7]. There also exists algebraic rotations which
guarantee a non-vanishing minimum product distance with
increasing QAM size [6]. In this paper, we study the error
performance of these rotated constellations with a quantized
receiver and minimum distance decoding, and derive the con-
ditions under which full modulation diversity can be achieved.

In case of a quantized receiver, the sample & hold out-
puts (5), are quantized to the appropriate quantization box
containing it. As an example, Fig. 3 illustrates the rotated
4-QAM constellation with θ = 20◦. The dark filled squares
represent the 4 possible values taken by the real component of
the normalized transmit vector xI/X = (xI

1/X , xI
2/X)T . A

b = 2-bit quantizer is used along both codeword components.
The dashed horizontal and vertical lines represent the quan-
tization boundaries along the 2 components. The projections
of the 4 possible vectors onto the first component (horizontal)
are marked with a cross. As an example, in Fig.3 the real
component of the sample & hold output vector sI = (sI

1, sI
2)T

(marked with a star), is therefore quantized to rI = (rI
1 , rI

2)T

(There are totally 16 different quantized outputs marked with
empty circles). The quantization box corresponding to the
output rI is shown in the figure as a square with solid edges.

As the noise variance σ2 → 0, the sample & hold output s
is almost the same as the normalized transmitted vector x/X .
Therefore at sufficiently high SNR, if there exists two different
transmit vectors x and y, such that Qb(x/X) and Qb(y/X)
are identical, then it is obvious that the error probability
performance would floor as SNR → ∞. This is because, at
high SNR the quantizer output would be the same irrespective
of whether x or y was transmitted, which makes it impossible
for the the receiver to distinguish between the two transmit
vectors leading to erroneous detection. More formally, two
transmit vectors x and y are said to be distinguishable if and
only if Qb(x/X) 6= Qb(y/X). Therefore, in order to avoid
floors in the error probability performance, we propose the
first code design criterion.
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Fig. 3. Signal space at the quantizer input with b = 2 (real component).
Rotated 4-QAM (θ = 20◦) depicted with dark filled squares.

Criterion I : A necessary and sufficient condition to avoid
error floors with a quantized receiver, is that any two transmit
vectors must be distinguishable.

To achieve full modulation diversity, even under deep fading
conditions in one component, any two transmit vectors x and
y must still be distinguishable in the other component. This
implies that the projections of all the transmit vectors onto
any one component must be distinguishable by the quantizer
in that component. Therefore, we have the second criterion.

Criterion II : Given a b-bit quantized receiver, in order to
achieve full modulation diversity, a necessary condition on the
rotation angle θ is that, any two distinct transmit vectors x
and y satisfy

Qb(xi/X) 6= Qb(yi/X), i = 1, 2. (14)

With a rotated M2-QAM there are totally M2 distinct projec-
tions onto any component, and therefore the minimum number
of quantization bits required for the transmit vectors to be
distinguishable along any component is at least d2 log2(M)e.
Hence, in order to achieve full modulation diversity a straight
forward lower bound on b is3

b ≥ d2 log2(M)e. (15)

Subsequently, we assume that for a given M , b is fixed
to the lower bound value in (15). We further note that,
with a b = d2 log2(M)e-bit quantizer, Criterion II is not
satisfied by all rotation angles. For example, even though
θ = 1/2 tan−1(2) guarantees a rotation code having non-
vanishing minimum product distance, with a b = 4-bit uniform
quantizer and M2 = 16-QAM it does not satisfy Criterion II.

With a b = d2 log2(M)e-bit quantizer, the set of angles (be-
tween 0 and π/4) which result in distinguishable projections
along both the codeword components will be referred to as the
admissible angles (i.e., angles which satisfy Criterion II). For
example, with 4- and 16-QAM, the admissible angles lie in the
range (tan−1(1/5) , π/4) and (11.3◦ , 16.9◦), respectively.
With increasing QAM size, the interval of admissible rotation

3dxe denotes the smallest integer not smaller than x.

angles reduces. For example, with 256-QAM, the range of
admissible angles is only (3.47◦ , 3.68◦). Another interesting
fact is that, for M2-QAM, θ = tan−1(1/M) is always in
the set of admissible angles. Further, as M grows larger,
tan−1(1/M)±ε are observed to be the only admissible angles.

Apart from the fact that the chosen angle must have dis-
tinguishable projections, it can be analytically shown that for
M2-QAM, any rotation angle for which the rotated constella-
tion satisfies

Qb(x/X) = x/X , x ∈ X (16)

does indeed achieve a diversity order of 2 (i.e., full modulation
diversity since n = 2), with a b = d2 log2(M)e-bit quantized
receiver and minimum distance decoding given by (13) (See
Theorem A.1, Appendix A in [11]). Subsequently, a rotated
constellation which satisfies (16) shall be referred as being
matched to the quantizer. It is easy to see that a rotated
M2-QAM constellation is matched to a b = 2dlog2(M)e-bit
uniform quantizer, if and only if, the projections of the transmit
vectors are component-wise equidistant and distinguishable.

Even with a mismatched rotated constellation having dis-
tinguishable projections (i.e., when the projections are not
equidistant), full modulation diversity may be achieved, but
then the error probability would be higher, since some transmit
vectors would be closer to the edge of their quantization boxes
(making it easier for noise to move the transmitted vector to
another quantization box when received) (illustrated through
Fig. 10 in Appendix A of [11]). Following along the same
lines as the proof of Theorem A.1 in [11], it can be shown that
mismatched constellations result in a higher error probability
when compared to matched constellations. This therefore leads
us to the third code construction criterion.

Criterion III : In order to minimize the error probability of
a rotated M2-QAM constellation with a b = d2 log2(M)e-bit
quantized receiver, the rotation angle must be such that the
rotated M2-QAM constellation is matched to the quantizer.

We next construct rotated M2-QAM constellations which
satisfy Criterion III. We had earlier observed that, for M2-
QAM, a rotation by θ = tan−1(1/M) appeared to be always
in the set of admissible angles. In fact, it can be shown analyt-
ically that a rotation by θ = tan−1(1/M), actually guarantees
equidistant projections along both codeword components.

For M2-QAM with θ = tan−1(1/M), it can be shown that
the minimum product distance of the code is 4M/(M2+1) (≈
4/M for M � 1). On the other hand, a rotation angle of θ =
1/2 tan−1(2) is known to have a minimum product distance
of at least 4/

√
5 irrespective of the QAM size. Therefore, with

increasing M , the error performance of a quantized receiver
with θ = tan−1(1/M) is expected to be increasingly less
power efficient than that of a unquantized receiver with θ =
1/2 tan−1(2). With increasing M , the set of admissible angles
appeared to be only tan−1(1/M) ± ε and therefore, it can
be argued that, the best possible error performance with a
b = d2 log2(M)e-bit quantized receiver would have a loss in
power efficiency when compared to an unquantized receiver.
However, this appears to be the cost to achieve full modulation
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diversity in quantized receivers with limited precision.

IV. SIMULATION RESULTS

All error probabilities reported in this Section have been
averaged over the Rayleigh flat fading statistics of the chan-
nel. Also, the receiver is assumed to have perfect channel
state information. In Fig. 4, we plot the average bit er-
ror rate/probability (BER), for rotated 16-QAM constellation
(M=4) and a b=4-bit quantized receiver. The following four
important observations can be made in Fig. 4: i) with θ =
1/2 tan−1(2) (which is known to achieve full modulation
diversity in an unquantized receiver), the BER performance
with a quantized receiver fails to achieve full diversity (note
the difference in slope at high SNR), which validates Criterion
II, ii) with θ = tan−1(1/4), which results in equidistant
projections, the quantized receiver achieves full modulation
diversity with b=4. Further, the quantized receiver performs
only 1 dB away from an ideal unquantized receiver at a BER of
10−4, iii) with a quantized receiver a rotation angle of θ = 16◦

also appears to achieve full modulation diversity, but perform
poor when compared to a matched rotated constellation with
θ = tan−1(1/4). This supports Criterion III, and iv) In Fig. 4
it is also observed that with 16-QAM rotated constellation (θ
= tan−1(1/4)), the error performance floors with b=3 < 4
quantization bits, which validates code design Criterion I.

It was discussed in Section III, that with increasing QAM
size, a quantized receiver would be increasingly less power
efficient when compared to an unquantized receiver. This
fact is illustrated in Fig. 5, where the BER performance of
both unquantized receiver with θ=1/2 tan−1(2) and quantized
receiver with θ=tan−1(1/M) are plotted for M2=4-,16- and
64-QAM. The number of quantization bits with M2-QAM is
b=d2 log2(M)e. It is observed that for a fixed BER of 2×10−4,
an unquantized receiver requires 6.3 dB more transmit power
when the QAM size is increased from 16 to 64. For the same
increase in QAM size, a quantized receiver would require 7.8
dB more transmit power. However, when the QAM size is
increased from 4 to 16, the extra transmit power required for
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a fixed target BER of 2×10−4 is roughly the same (about 7.7
dB) for both quantized and unquantized receiver.

In Fig. 11, Appendix A of [11], we report the BER
performance of a rotated 16-QAM constellation for varying
θ and fixed SNR. It is observed that, the rotation angle which
results in a matched constellation, achieves the minimum BER.
This then supports code design Criterion III.
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